Зарегистрироваться
Восстановить пароль
FAQ по входу

Адлер В.Э., Хабибуллин И.Т., Черданцев И.Ю. Групповой анализ дифференциальных уравнений

  • Файл формата djvu
  • размером 511,33 КБ
Адлер В.Э., Хабибуллин И.Т., Черданцев И.Ю. Групповой анализ дифференциальных уравнений
Учебное пособие. — Уфа: Башкирский государственный университет (БашГУ), — 2013. — 72 с. — (Приложения групп Ли в математической физике).
Настоящее издание составлено на основе цикла лекций, прочитанных авторами на международной школе-конференции для студентов, аспирантов и молодых ученых "Фундаментальная математика и ее приложения в естествознании".
Излагаются основы классического группового анализа дифференциальных уравнений. Даются понятия групп точечных и контактных преобразований, допускаемых уравнением, и приводятся алгоритмы вычисления соответствующих алгебр симметрий, их дифференциальных инвариантов и понижения порядка уравнения.
Рассматриваются также понятие высших симметрий и, некоторые их приложения к граничным задачам. Изложение ведется на понятном уровне, доступном для студентов старших курсов, и сопровождается большим числом примеров и упражнений. В некоторых местах желательно знакомство с теорией непрерывных групп и алгебр Ли.
Обыкновенные дифференциальные уравнения.
Точечные преобразования.
Контактные преобразования.
Однопараметрические группы преобразований.
Группы, допускаемые уравнением.
Алгебра симметрий.
Вычисление алгебры симметрий.
Приложения к уравнениям первого порядка.
Дифференциальные инварианты.
Понижение порядка уравнения.
Уравнения в частных производных.
Основные определения.
Вычисление алгебры симметрий.
Инвариантные решения.
Высшие симметрии.
Теорема Бэклунда.
Высшие симметрии.
Интегрируемые уравнения.
Граничные условия, совместимые с симметриями.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация