Зарегистрироваться
Восстановить пароль
FAQ по входу

Выложенные файлы

  • Страницы:
  • 1
  • 2
  • Всего: 53
O’Reilly Media, Inc., 2020. — 624 p. — ISBN: 978-1492045526. Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first...
  • №1
  • 32,82 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 220 p. — ISBN: 978-1-492-04535-9. Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian...
  • №2
  • 6,22 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2020. — 179 p. — ASIN B0895YQYFC. Learn how to solve real-world problems with Deep Learning models (NLP, Computer Vision, and Time Series). Go from prototyping to deployment with PyTorch and Python! PyTorch is the best Deep Learning library there (currently) is, period! Doing ML with PyTorch feels like a superpower (of course, there are bad parts, too). Trust me, I...
  • №3
  • 12,68 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти, С. Черников. — СПб.: Питер, 2022. — 576 с.: ил. — (Библиотека программиста). — ISBN 978-5-4461-1945-5. Многие средства глубокого обучения используют Python, но именно библиотека PyTorch по-настоящему «питоническая». Легкая в освоении для тех, кто знаком с NumPy и scikit-learn, PyTorch упрощает работу с глубоким обучением, обладая в то же время богатым...
  • №4
  • 45,41 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №5
  • 33,58 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. А. Попова. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN 978-5-4461-1677-5. PyTorch – это фреймворк от Facebook с открытым исходным кодом. Узнайте, как использовать его для создания собственных нейронных сетей. Ян Пойнтер поможет разобраться, как настроить PyTorch в облачной среде, как создавать нейронные архитектуры, облегчающие работу с...
  • №6
  • 2,53 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN: 978-5-4461-1241-8 (рус.), ISBN: 978-1491978238 (англ.). Обработка текстов на естественном языке (Natural Language Processing, NLP) — крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate....
  • №7
  • 2,77 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №8
  • 4,33 МБ
  • добавлен
  • описание отредактировано
Manning Publications, 2020. — 520 p. — ISBN: 978-1617295263. Code files only! Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and...
  • №9
  • 169,25 МБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №10
  • 927,26 КБ
  • добавлен
  • описание отредактировано
GitforGits, October 5, 2023. — 238 p. — ISBN-13: 978-8119177967. Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural...
  • №11
  • 279,46 КБ
  • добавлен
  • описание отредактировано
Manning Publications, 2020. — 520 p. — ISBN: 978-1617295263. Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with...
  • №12
  • 24,66 МБ
  • добавлен
  • описание отредактировано
Independently published, 2021. — 1187 p. Version 1.0, 2021-05-18 If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) The book covers from the basics of gradient descent all the way up to fine-tuning large NLP models (BERT and GPT-2)...
  • №13
  • 17,33 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN: 978-5-4461-1241-8 (рус.), ISBN: 978-1491978238 (англ.). Обработка текстов на естественном языке (Natural Language Processing, NLP) — крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate....
  • №14
  • 4,27 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. Д. Брайт. — СПб.: Питер, 2022. — 624 с.: ил. — (Бестселлеры O’Reilly). — ISBN 978-5-4461-1475-7. Обычно на глубокое обучение смотрят с ужасом, считая, что только доктор математических наук или ботан, работающий в крутой айтишной корпорации, могут разобраться в этой теме. Отбросьте стереотипы: любой программист, знакомый с Python, может добиться впечатляющих...
  • №15
  • 7,73 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти, С. Черников. — СПб.: Питер, 2022. — 576 с.: ил. — (Библиотека программиста). — ISBN 978-5-4461-1945-5. Многие средства глубокого обучения используют Python, но именно библиотека PyTorch по-настоящему «питоническая». Легкая в освоении для тех, кто знаком с NumPy и scikit-learn, PyTorch упрощает работу с глубоким обучением, обладая в то же время богатым...
  • №16
  • 7,25 МБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 288 p. — ASIN: B07N7KP6NJ. PyTorch: A Comprehensive Guide to Deep Learning for Beginners – A Step-by-Step Guide is designed to demystify the world of deep learning, making it accessible to individuals with little to no programming experience. It focuses on practical implementation using PyTorch, a popular and user-friendly framework. Why This...
  • №17
  • 408,66 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 117 p. — ASIN: B0CSV4H1FD. Large Language Models (LLMs) are revolutionizing AI, understanding and generating human language like never before. But harnessing their full potential requires the right tools. This book takes you on a deep dive into pyTorch, the leading framework for building and optimizing LLMs. This book is your practical guide to...
  • №18
  • 306,61 КБ
  • добавлен
  • описание отредактировано
2nd Edition. — Apress Media, LLC, 2022. — 290 p. — ISBN 978-1-4842-8925-9. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code. You’ll start by...
  • №19
  • 13,12 МБ
  • добавлен
  • описание отредактировано
Apress, 2019. — 184 p. — ISBN13: (electronic): 978-1-4842-4258-2. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability...
  • №20
  • 14,76 МБ
  • добавлен
  • описание отредактировано
Independently published, 2023. — 48 р. — ASIN: B0CN4XBN73. Dive into the world of intelligent systems with 'Intro to Machine Learning with PyTorch.' This comprehensive ebook serves as your gateway to understanding the fundamentals of machine learning using PyTorch, a powerful open-source machine learning library. Whether you're a beginner or have some experience in the field,...
  • №21
  • 9,47 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №22
  • 21,33 МБ
  • добавлен
  • описание отредактировано
Amazon Digital Services LLC, 2019. — 160 p. — ASIN: B07N7KP6NJ. This book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the...
  • №23
  • 339,54 КБ
  • добавлен
  • описание отредактировано
Apress, 2019. — 184 p. — ISBN13: (electronic): 978-1-4842-4258-2. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability...
  • №24
  • 15,34 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №25
  • 195,17 КБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN: 978-5-4461-1241-8 (рус.), ISBN: 978-1491978238 (англ.). Обработка текстов на естественном языке (Natural Language Processing, NLP) — крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate....
  • №26
  • 2,51 МБ
  • добавлен
  • описание отредактировано
Amazon Digital Services LLC, 2019. — 160 p. — ASIN: B07N7KP6NJ. This book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the...
  • №27
  • 241,05 КБ
  • добавлен
  • описание отредактировано
Manning Publications, 2020. — 520 p. — ISBN: 978-1617295263. Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with...
  • №28
  • 7,09 МБ
  • добавлен
  • описание отредактировано
BPB Publications, 2024. — 310 р. — ISBN: 978-93-55517-494. Your key to transformer based NLP, vision, speech, and multimodalities Key Features Transformer architecture for different modalities and multimodalities. Practical guidelines to build and fine-tune transformer models. Comprehensive code samples with detailed documentation. Description This book covers transformer...
  • №29
  • 5,87 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №30
  • 26,20 МБ
  • добавлен
  • описание отредактировано
Apress Media LLC, 2022. — 240 p. — ISBN-13: 978-1-4842-8273-1. Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and...
  • №31
  • 3,16 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Apress Media, LLC, 2022. — 290 p. — ISBN 978-1-4842-8925-9. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code. You’ll start by...
  • №32
  • 4,22 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 210 p. — ISBN: 978-1-492-04535-9. Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian...
  • №33
  • 9,32 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 210 p. — ISBN: 978-1-492-04535-9. Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian...
  • №34
  • 3,87 МБ
  • добавлен
  • описание отредактировано
GitforGits, October 5, 2023. — 238 p. — ISBN-13: 978-8119177967. Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural...
  • №35
  • 270,83 КБ
  • добавлен
  • описание отредактировано
GitforGits, October 5, 2023. — 238 p. — ISBN-13: 978-8119177967. Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural...
  • №36
  • 407,13 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 288 p. — ASIN: B07N7KP6NJ. PyTorch: A Comprehensive Guide to Deep Learning for Beginners – A Step-by-Step Guide is designed to demystify the world of deep learning, making it accessible to individuals with little to no programming experience. It focuses on practical implementation using PyTorch, a popular and user-friendly framework. Why This...
  • №37
  • 551,76 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 288 p. — ASIN: B07N7KP6NJ. PyTorch: A Comprehensive Guide to Deep Learning for Beginners – A Step-by-Step Guide is designed to demystify the world of deep learning, making it accessible to individuals with little to no programming experience. It focuses on practical implementation using PyTorch, a popular and user-friendly framework. Why This...
  • №38
  • 580,91 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 117 p. — ASIN: B0CSV4H1FD. Large Language Models (LLMs) are revolutionizing AI, understanding and generating human language like never before. But harnessing their full potential requires the right tools. This book takes you on a deep dive into pyTorch, the leading framework for building and optimizing LLMs. This book is your practical guide to...
  • №39
  • 336,79 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 117 p. — ASIN: B0CSV4H1FD. Large Language Models (LLMs) are revolutionizing AI, understanding and generating human language like never before. But harnessing their full potential requires the right tools. This book takes you on a deep dive into pyTorch, the leading framework for building and optimizing LLMs. This book is your practical guide to...
  • №40
  • 357,74 КБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 250 p. — ISBN13: 978-1-491-97823-8. From the Preface This book aims to bring newcomers to natural language processing (NLP) and deep learning to a tasting table covering important topics in both areas. Both of these subject areas are growing exponentially. As it introduces both deep learning and NLP with an emphasis on implementation, this book occupies...
  • №41
  • 11,54 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 250 p. — ISBN13: 978-1-491-97823-8. From the Preface This book aims to bring newcomers to natural language processing (NLP) and deep learning to a tasting table covering important topics in both areas. Both of these subject areas are growing exponentially. As it introduces both deep learning and NLP with an emphasis on implementation, this book occupies...
  • №42
  • 4,81 МБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №43
  • 1,21 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №44
  • 165,09 КБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №45
  • 22,05 МБ
  • добавлен
  • описание отредактировано
Apress Media LLC, 2022. — 240 p. — ISBN-13: 978-1-4842-8273-1. Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and...
  • №46
  • 4,49 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Apress Media, LLC, 2022. — 290 p. — ISBN 978-1-4842-8925-9. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code. You’ll start by...
  • №47
  • 13,23 МБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №48
  • 184,07 КБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №49
  • 368,60 КБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №50
  • 413,40 КБ
  • добавлен
  • описание отредактировано
Нет выложенных файлов.
  • Страницы:
  • 1
  • 2
  • Всего: 53